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The motion of shallow-water wave trains is studied in the laboratory in one space dimension and one
time dimension (1+1). Our focus is on the nonlinear evolution of the wave trains as recorded at five spa-
tially separated probes. Both the linear Fourier transform and the inverse scattering transform (IST) for
the periodic Korteweg—de Vries (KdV) equation are exploited in the analysis of the daia. IST provides a
set of nonlinear basis functions, which are here computed for measured wave data and compared to the
sinusoidal basis of the linear Fourier transform. We find that the scattering-transform mode amplitudes
are nearly constants of the motion, while the Fourier modes vary substantially in space and time. The
results suggest that the KdV equation more nearly describes the nonlinear evolution of the waves than

does linear evolution.

PACS number(s): 03.40.Gc, 03.40.Kf, 47.35.+i

In the analysis of nonlinear wave data one often uses
the Fourier transform as a primary analysis tool. One
knows of course that the wave motion may well be highly
nonlinear and the Fourier method, which is intrinsically
linear, may not give results consistent with nonlinear evo-
lution. In the present paper we offer a relatively new ap-
proach, based upon a kind of nonlinear Fourier analysis,
which arises theoretically as the inverse-scattering-
transform (IST) solution of certain nonlinear, integrable
wave equations [1-5]. Here we focus on one of these sys-
tems, that due to Korteweg and de Vries (KdV), which
describes the evolution of long waves in shallow water
[6]. IST as applied here is taken to have periodic or
quasiperiodic boundary conditions, just as is assumed in
the analysis of data using the discrete or fast Fourier
transform. Our work is a natural extension of the classic
papers by Hammack and Segur [7] who studied KdV evo-
lution in the laboratory for infinite-line boundary condi-
tions and Zabusky and Galvin [8] who studied periodic
boundary conditions.

The numerical scattering-transform analysis of period-
ic or quasiperiodic wave data recorded in the laboratory
is the main topic of this paper. The data analysis pro-
cedure consists of two steps. First one takes the direct
scattering transform of the wave train time series in order
to compute the associated Floquet spectrum. A separate
step, the inverse scattering transform, is required to deter-
mine the nonlinear, hyperelliptic oscillation modes of the
theory, from which the wave train can be reconstructed
by a linear superposition law. There are two important
features of the approach which make it useful for the
analysis of experimental data. The first is that the
scattering-transform spectrum is a higher-order generali-
zation of the linear Fourier transform. The second
feature is that nonlinear filtering can be accomplished in
the inversion process. These ideas were exploited by Os-
borne et al. [9] to find solitons in complex wave trains in
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ocean surface wave data.
The dimensional form for the (spacelike) KdV equation
is given by

’7:+Co77x+a”’l"7x +B17xxx=0 . (1)

n(x,?) is the wave amplitude which evolves as a function
of space x and time ¢, c0=(gh)1/2, a=3cy/2h,
B=coh?/6; (1) has the linearized dispersion relation
o=cok —Bk?; g is the acceleration of gravity, c, is the
linear phase speed, and 4 is the water depth. Subscripts
with respect to x and ¢ refer to partial derivatives. KdV
solves a Cauchy problem: given an initial wave train,
n(x,t=0), (1) determines the motion for all time thereaf-
ter, 1(x, ).

Experimentally we record wave amplitudes as a func-
tion of time at a single spatial location, thus implying the
need to determine the scattering transform of a time
series, 1(0,t). For this purpose we employ the timelike
KdV equation (TKdV) [2]:

N, +con, +a'nm, +B7,, =0, (2)

where c{=1/cqy, @'=—a/c}, and B'=—F/cy; (2) has
the linearized dispersion relation k=w/cy+(B/c§)w’.
TKdYV solves a boundary value problem: given the tem-
poral evolution 7(0,#) at some fixed location x =0, (2)
determines the wave motion over all space 7(x,?). We as-
sume either periodic [7(x,t)=n(x,t+T)] or quasi-
periodic boundary conditions [there exists a T(g) such
that |n(x,t+T)—n(x,t)| <e for all £].

Determination of the IST of a periodic, broad-
spectrum, discrete wave train 7(0,¢,), 1 =n =N, is now
outlined [10-13]. The IST spectrum is determined from
the one-dimensional Schrodinger eigenvalue problem:

v, +[An(0,t)+Q2]¥=0, (3)

where A=ac?/6B and Q is a complex frequency, with
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QO?=E real. Bloch eigenfunction solutions of (3) are
periodic or antiperiodic on 0<t <7T. The trace A(E) of
the monodromy matrix M [which maps solutions of (3)
from ¢ to ¢t+7] is the Floquet discriminant,
A(E)=1TrM. Solutions of A(E)==x1 determine the
discrete eigenvalues E; (1=<j<2N-1) which constitute
the “main spectrum” of the motion; two adjacent eigen-
values define an “open band” or ‘“‘degree of freedom” of
IST (E,;, E,j4) when |A(E)|>1; for Ey;=E,; ., the
band is “degenerate” and the wave amplitude is zero.
The auxiliary spectrum consists of hyperelliptic functions
pj(x,1) which oscillate between the two eigenvalues of an
open band according to nonlinear ordinary differential
equations discussed elsewhere [10—14]. The width of an
open band is the amplitude of a hyperelliptic oscillation
mode, a;(f;)=|u;| =(E,; ; —E,;) /24, e.g., a “single de-
gree of freedom,” “spectral component,” or ‘“basis state”
of KdV; the associated frequencies are given by f;=j /T
(or equivalently f;=Q; /@) [15]. A linear superposition of
these basis states is the solution to the KdV equation:
N
Ax,t)=—E+ 3 [2u;(x,t)—E;;—E,; ;] . 4)
j=1

In the absence of interactions among nonlinear spectral
components, the u;(x,?) degenerate to ordinary cnoidal
waves. For small amplitude wave motion the u; reduce
to sine waves and (4) becomes an ordinary Fourier series
[15-17]. Solitons are not present in the data analyzed
here and we therefore do not discuss their spectrum.

The determination of the KdV spectrum from (3) [e.g.,
the modes a;(f;)] we call the direct scattering transform.
Determination of the u;(x,#) and the solution to KdV by
the linear superposition formula (4) we call the inverse
scattering transform. Computer algorithms and further
mathematical developments are given elsewhere [15-21].

We now discuss the analysis of laboratory-generated
surface waves. The data were taken in the wave tank at
the Hydraulic Section of the Institute of Civil Engineer-
ing, Florence, Italy. The tank has dimensions
0.8X0.76X46 m> and has a programmable wave maker.
For the purposes of this paper we conducted a series of
experiments, only one of which we report here. The wa-
ter depth was 498 cm  (Ursell number
Ur=3gH,T3/4h*=42.7) and five resistance-gauge
probes were placed at a distances of x; =4.25, x,=7.01,
x3=11.02, x,=15.02, and x5=19.00 m from the wave
maker. A ramp was placed at the end of the tank from
19 to 50 m, with a slope of 0.02. This configuration al-
lowed waves to be measured in the first 19-m section,
with the remaining part of the tank serving as a wave ab-
sorber; tests indicate that only about 2% of the energy
was reflected from the ramp [22]. Thus the ramp provid-
ed an efficient absorber for the long waves under con-
sideration here and consequently minimized reflection.
This is a requirement, since the KdV equation and,
hence, the scattering transform are unidirectional.

The recorded data are shown in Fig. 1 at each of the
five stations; time series of 8 sec duration, recorded 20
times a second, are shown. The wave maker was pro-
grammed to produce sinusoidal waves of height 9 cm
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with a period of 4 sec; Fig. 1 therefore shows two periods
of the evolving wave train at each of the five probes. The
amplitude-to-depth ratio for the generated waves was
0.09. Clearly the input wave train was distorted
significantly from the sinusoidal initial conditions by the
time it reached the first probe. Each of the time series
was analyzed both by the Fourier and scattering trans-
forms. We found that both methods contained essentially
three dominant oscillation modes (other modes tended to
be substantially smaller). The scattering transform
analysis is shown in Fig. 1(b). The dominant three IST
oscillation modes are given at each of the probes, labeled
1-5 in the figure. We have summed the modes and these
are shown in Fig. 1(a) (dotted lines). While including
more than three modes improves the agreement between
the scattering transform and the data, the essential
features of the data are well represented by the sum of the
three nonlinear oscillation modes. We have effectively
filtered out higher-frequency components by summing (2)
only over the first three modes.

A comparison with the linear Fourier transform
achieves similar good agreement with the data, but the
linear modes are found to vary spatially and temporally,
while the IST modes are very nearly constant for the
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FIG. 1. (a) Wave trains (solid lines) measured at each of five
probes at distances 4.25, 7.01, 11.02, 15.02, and 19.00 m from
the wave maker. (b) The first three sattering-transform modes
at each of the five probes. Sum of the three scattering-transform
modes [dotted lines in (a)] gives favorable comparison to the
data.
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space and time ranges investigated. This is seen in Fig. 2,
where we compare the linear Fourier [Fig. 2(a)] and
scattering-transform mode amplitudes [Fig. 2(b)] at the
five probes. The average of each of the modes was ob-
tained across the five stations and these are represented
by the horizontal lines. The uncertainties shown on each
mode amplitude are the experimental errors, which we
have estimated to be about +3.0 mm for each probe;
each of the three modes has errors of one-third this
amount, +1.0 mm. Independent of error estimates, how-
ever, the linear Fourier modes are seen to have a strong
space-time dynamical behavior because they substantially
deviate from their average values as they propagate down
the tank. On the other hand, the scattering-transform
modes [Fig. 2(b)], within the uncertainties present in the
experimental measurements, are practically constant over
all the probes. This suggests that the wave evolution is
governed primarily by KdV dynamics, e.g., for pure KdV
evolution the nonlinear oscillation mode amplitudes are
constants of the motion.

It is interesting to observe the shape of the KdV oscil-
lation modes [Fig. 1(b)]. The waves are clearly not sine
waves and closer inspection reveals that the modes are
also not cnoidal waves, which are the single-mode solu-
tion to KdV. Hence, for the case considered here, it is
transparent why the natural KdV modes may be viewed
as hyperelliptic function solutions to the equation, e.g.,
they are generalizations of the ordinary cnoidal wave.
Note further that the KdV modes can be seen to simul-
taneously translate and to distort from their original
shape as they propagate from probe to probe.

In conclusion, we find that the inverse-scattering-
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FIG. 2. (a) Amplitudes of first three linear Fourier modes at
each of the five probes. (b) Amplitudes of first three scattering-
transform modes at each of the five probes. Note that the
scattering-transform modes are nearly constant, while the linear
Fourier modes substantially vary from probe to probe.

transform spectral decomposition of shallow-water,
laboratory-generated unidirectional wave trains discussed
herein suggests (1) that KdV evolution dominates the
nonlinear dynamics and (2) that the space-time dynamics
of the scattering-transform modes is found to be much
simpler (nearly constant) than that for the linear Fourier
modes.
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